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Abstract In this paper, we explore how a visual system
equipped with a pair of frontally-placed eyes/cameras can
rapidly estimate egomotion and depths for the task of lo-
comotion by exploiting the eye topography. We eschew the
traditional approach of motion-stereo integration, as finding
stereo correspondence is a computationally expensive oper-
ation. Instead, we propose a quasi-parallax scheme by pair-
ing appropriate visual rays together, thus obviating the need
for stereo correspondence and yet being able to leverage on
the redundant information present in the binocular overlap.
Our model covers realistic visual systems where the two
eyes might deviate from the strictly frontal-parallel config-
uration, and yet the results show that the advantages of the
parallax-based approach are retained. In particular, it offers
better disambiguation of translation and rotation over con-
ventional two-frame structure from motion approaches, de-
spite not having views covering diametrically opposing di-
rections like that of spherical eyes or laterally-placed eyes.
The rapid processing that such scheme entails seems to offer
a more realizable and useful alternative for depth recovery
during locomotion.
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1 Introduction

The subject of this paper is to re-examine visual system with
binocular overlap in the visual field of two eyes with a dif-
ferent perspective. By different perspective, we mean that
the binocular overlap is not necessarily leveraged in terms
of stereo matching and stereoscopic depth recovery, within
which computational questions had usually been posed in
the computer vision community. That is, vision may indeed
be diplopic even if the visual fields of the two eyes have
overlap. The motivations for such re-examination can be
traced to at least three aspects.

1.1 The Challenge of Using Stereopsis for Locomotion

The rich development of feature descriptors such as SIFT
(Lowe 2004) and modern optimization techniques such as
graph cut have resulted in significant increase in the perfor-
mance of stereo systems (Szeliski et al. 2008). It seems rea-
sonable to say that we have unlocked the secret of creating
a successful stereo system. However, all of these successes
presuppose the availability of abundant computational re-
sources. Unless we are prepared to identify ourselves with
the brute-force power of modern computer, we must re-
examine the premises of computational stereo.

If we trace the origins of AI movements such as active
and purposive vision, one of the dominant themes of these
movements in the 90’s is that vision is for serving action like
locomotion in the world. Detailed, general purpose scene
reconstruction might contain too much information and is
too slow. Such view is also echoed by Tsotsos’ argument
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on complexity (Tsotsos 1988). All these arguments still ring
true today. At the risk of sweeping generalization, modern
computational approaches have little hope of achieving the
swift flight of say a bird in structurally complex environ-
ment such as woodland. Indeed, who can say that these mod-
ern approaches have not resulted in a form more unrealiz-
able than any conceived in the 90’s? Furthermore, feature
matching in the natural environment still poses a grim chal-
lenge. Features in such environment often lack distinctive-
ness; there are many spurious corners (e.g. due to the inter-
leaving of branches) and apparent contours (e.g. tree trunk).
Feature appearance changes more drastically as a result of
viewpoint change, further compounding the identification
of correct matches. Our optical-flow-based solution faces
much less of these problems because there is no need for
feature distinctiveness (feature contrast, yes) and because it
entails essentially differential displacement. Clearly, we are
not saying that stereopsis has no role to play, but we are sug-
gesting that it is perhaps more for attending to slower tasks
and for recovering shape in the immediate space around the
body (e.g. for visually guided manipulation of items held in
the hands/jaws or bills), rather than for distance perception
of far objects during locomotion.

1.2 An Instructive Look at the Natural World

Stereopsis has been investigated in only a narrow range
of species that share the characteristic of a relatively wide
frontal binocular field produced by eyes that are typically
widely spaced and forward-facing, with parallel axes and
conjugate movements. However, these are significant fea-
tures of the visual system in only a small proportion of ex-
tant vertebrates, most notably primates, and may be a highly

specialized rather than general arrangement in the animal
world.

The example of the avian world is instructive. Except for
the case of owl, the presence of global stereopsis in other
bird species is based upon conjecture. McFadden (1994)
found some behavioral evidence of local stereopsis in pi-
geons; however, these results did not support the presence
of global stereopsis. Short-toed Snake-eagles are diurnal
predators that are described in handbooks as having for-
ward facing eyes and a wide binocular field. However, ap-
pearances are deceptive. The functional binocular field of
these birds is vertically long and relatively narrow (maxi-
mum width 20◦, see Fig. 1). This situation is not unique and
has been found in other species including ostrich, heron and
owl, and suggests that many bird species do not make full
use of the potentially available binocular field. For many
other birds, the frontal binocular fields are less than 10◦ wide
and even as narrow as 5◦ but they are sufficient for the con-
trol of flight and landing at relatively high velocities and in
structurally complex (e.g., woodland) habitats.

Martin (2007, 2009) argued that stereopsis is too slow,
especially for the purpose of locomotion. Davies and Green
(1994) have pointed out that stereopsis involves consider-
able neural processing and is too slow to control the esti-
mation of distance and depth when a bird is landing upon a
perch. McFadden (1993) pointed out that pigeons have depth
perception, and are sensitive to disparities of about 1 arc min
(compared to 4 s in humans), but it is doubtful that this abil-
ity is used in foraging.

Thus, for the case of birds at least, rather than try to find
evidence of binocular fusion and stereopsis, Martin (2007,
2009) argued that it might be more parsimonious to con-
sider what the function of binocularity could be if birds

Fig. 1 Visual field of short-toed
snake-eagle (from Martin 2007,
courtesy of Graham R. Martin)
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viewed objects diplopically within their binocular fields. Do
two eyes retrieving information from almost identical flow-
fields provide more information than one eye? Does it add
anything beyond mere redundancy? Or does the visual sys-
tem gain anything for such overlapping arrangement? The
scheme put forth in our paper provides one possible way to
leverage such arrangement.

Even for the case of primates, where one of the most con-
spicuous visual specializations is the large area of overlap
between the fields of vision of the two eyes and the evident
existence of stereopsis, stereo processing might still be too
slow for fast locomotion (e.g. when primates execute swift
arboreal movements among the canopy). The concern dur-
ing fast locomotion is also likely to be more about obstacles
that are further away, since the clearance away from these
obstacles needs to be greater at higher speed of movements.
Stereopsis is useful only for depth perception of the imme-
diate space surrounding the body, typically for tasks such as
object manipulations. As such, one might ask: if one conjec-
tures that there is no fusion of the disparate right-eyed and
left-eyed views of the scene during fast motion, how can the
readily available redundance be made use of? Is it just mere
greater robustness from redundance?

We hasten to add that we own to no better motive for
studying an alternative scheme for leveraging such redun-
dance other than simple curiosity about its possibility, with-
out necessarily drawing general conclusions about the exis-
tence of such a scheme in the natural world.

1.3 Dynamic Depth Cues During Locomotion

At this point, it may be asked: what about motion cues?
The primary depth cue during locomotion is indeed mo-
tion cue. Yet due to the difficulty in structure from mo-
tion (SFM), coupled with the demand for real-time pro-
cessing, so far only simple mechanisms have been pro-
posed for such tasks in biomimetic works for locomo-
tion, e.g. the rather minimalistic visual system consisting
of elementary motion detectors and dealing with transla-
tion only (Franceschini et al. 1992). In the field of robotics,
many authors have made use of the “optic flow balance”
hypothesis in designing visually guided wheeled vehicles
(Coombs and Roberts 1993; Duchon and Warren 1994;
Santos-Victor et al. 1995; Dev et al. 1997; Weber et al. 1997;
Carelli et al. 2002; Argyros et al. 2004; Hrabar et al. 2005;
Humbert et al. 2007), or aerial vehicles (Corke et al. 2004;
Griffiths et al. 2006), and simulating flying agents (Neu-
mann and Bulthoff 2001; Muratet et al. 2005) and hovercraft
(Humbert et al. 2005). The “optic flow balance” hypothe-
sis has been tested mainly in corridors and urban canyons.
Despite the success of the “optic flow balance” hypothesis
in robotics, new behavioural experiments have shown that
honeybees actually do not necessarily centre when travers-
ing a corridor (Ruffier et al. 2007; Serres et al. 2007). They

may follow one of the two walls at a certain distance. Ser-
res et al. (2008) designed a flying agent that can shift from
‘wall-following behavior’ to ‘centring behavior’.

Difficulties remain for negotiation of more challenging
corridors including L-junctions or T-junctions, not to men-
tion in complex scenes such as a forested environment. No
one seemed too anxious to grapple with these more chal-
lenging situations using richer SFM cues. Yet, as we will
show in this paper, the processing of these richer SFM cues
can be made real-time by exploiting the binocular constraint
afforded by the two eyes. A simple solution involving linear
steps is proposed to solve for the full 3d motion and struc-
ture; it is much more parsimonious than stereo in the sense
that it makes use of the optical flow already extracted for
monocular processing.

2 Literature Review

There has been a long history in SFM research that ex-
ploits stereo. In the earlier works of motion-stereo integra-
tion, no matter it is the mere juxtaposition of the results
from independent processing of the motion and stereo in-
formation (Ayache and Faugeras 1989; Grosso et al. 1989;
Kriegman et al. 1989), where the final estimates of structure
were based on some combination of the outputs of these sep-
arate processes (coupled loosely together sensus, Clark and
Yuille 1994), or the tightly coupled approach where the pro-
cessing of one type of visual information may depend on the
presence of another (Balasubramanyam and Snyder 1991;
Li and Duncan 1993; Shi et al. 1994; Waxman and Dun-
can 1986; Zhang and Negahdaripour 2008), the all but uni-
versal assumption is that the overlap in the visual field is
used for computing binocular disparity. This assumption re-
mains true in the later approaches with the advent of more
sophisticated techniques such as PDE (Strecha and Gool
2002), variational approach (Huguet and Devernay 2007;
Pons et al. 2007; Williams et al. 2005), and factorization
(Ho and Chung 2000).

Then there is another class of related works where the
multiple cameras that are in simultaneous motion may not
have overlap in their field of view and thus stereopsis is not
possible. The general camera model (GCM) and the general-
ized essential matrix put forth (Pless 2004; Kim et al. 2010)
have the advantage of generality (in that it admits any ar-
rangement of the cameras). So too in the works of Neumann
(2004) except that the input to each camera is processed in-
dependently and the output of each camera is only integrated
at the final stage with those of others. As mentioned, these
works do not assume any binocular overlap. However, in
many biological vision systems, even for those animals in
which the eyes are laterally placed, there exists some degree
of overlap in the visual field in the frontal direction, and it
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is only by some effort of imagination that one can conceive
of nature not using it in some form, even though, for various
reasons discussed in the preceding section, the leveraging
may not be in the form of stereopsis.

Finally, there are those works which exploit the organi-
zational possibility offered by the eye topography. In partic-
ular, by pairing visual rays from different eyes (or cameras),
useful information such as heading direction can be ob-
tained by parsimonious visual processing (Hu and Cheong
2009). At the heart of such approach of pairing appropri-
ate visual rays is the idea of parallax. The traditional for-
mulation of parallax is based on the fact that the difference
in velocity between two points that are nearby in the im-
age but at different depths is nearly independent of rota-
tion (Hildreth 1992; Longuet-Higgins and Pradzny 1980;
Rieger and Lawton 1985). Canceling rotation is advanta-
geous as it enhances translation pickup; the residual func-
tion for the heading direction has a deeper minimum than
the one based on general motion recovery, leading to a min-
imization that is more robust to the bas-relief ambiguity and
image noise in general. However, the twin hard problems of
determining pairs of image features along depth boundaries
and measuring their image velocities (given the interference
of the boundary) plagued such approaches from its earliest
beginnings. To avoid these problems, Tomasi and Shi (1993)
measured the differential changes in the angles between the
projection rays of pairs of point features. Given spherical
field of view, Lim and Barnes (2008) measured the differ-
ence in flow for visual rays that are in the opposite direc-
tion on the image sphere. Hu and Cheong (2009) extends it
to the case of a pair of laterally-placed eyes or compound
eyes, where again, visual rays from the opposite directions
are paired together, and the difference in their optic flows is
computed. Although the resulting quantity contains a weak
residual term induced by the rotation of the head, the rota-
tion is largely removed, hence the name quasi-parallax being
coined for the difference term.

In this paper, we propose a quasi-parallax approach for
visual systems equipped with a pair of eyes/cameras with
overlapping visual field in the frontal direction. The sim-
plest of these systems is that of a frontally-placed pair of
eyes/cameras with parallel optical axes pointing straight
ahead. We also extend the formulation to the case where the
optical axes may not be parallel, and this covers the impor-
tant case when the eyes of an animal are divergent (in many
animals, the bony sockets of the eyes are somewhat outward-
pointing). As opposed to most works on such systems with
overlapping visual field cited in the preceding paragraph, the
crucial difference in our system is that no binocular dispar-
ities are computed, thus obviating the need for stereo cor-
respondence and making the method particularly useful for
real-time locomotion. At a more fundamental level, we show
through our work that the binocular arrangement of eyes ad-

mits another possibility for exploitation, that vision may in-
deed be diplopic and yet we can gain important informa-
tion from this arrangement. As both this work and (Hu and
Cheong 2009) are based on the notion of quasi-parallax but
each with different eye configurations, it is of interest to ex-
amine whether the eye configuration will impact on how
well the parallax-based methods can resolve the bas-relief
ambiguity. As we will show later in the experimental sec-
tion, all the advantages of parallax-based methods shown
for spherical eyes or lateral eyes covering diametrically op-
posing directions are retained for the case of frontal eyes
examined in this paper. In particular, given quasi-parallax
measurements with equal quality, the performance of the
frontal eyes is on par with similar parallax-based systems
with spherical eyes or lateral eyes, despite not having views
covering diametrically opposing directions. The crucial fac-
tor in a parallax-based scheme is the quality of the parallax
measurements, not the field of view per se.

3 Basic Model for Frontally-Placed Camera Pair

We start with the simplest model (Fig. 2), that of two
frontally placed cameras, with their image planes coplanar
and the optical axes parallel. The two cameras are mounted
rigidly on a platform, each displaced an equal distance b

from the platform origin Op . The world coordinate system
(WCS) is placed at the platform origin and its axes align
with the axes of camera coordinate system (CCS). We will
use the subscripts l and r to represent the entities associated
with the left and the right cameras respectively.

3.1 Motion and Flow Representation

With respect to the WCS, let the platform move with a trans-
lation υ = (U,V,W)T and a rotation ω = (α,β, γ )T . This
induces the following right and left camera motions (υr ,ωr )

and (υ l ,ωl) in their own reference frames:

υr = (U,V + bγ,W − bβ)T , ωr = (α,β, γ )T

υ l = (U,V − bγ,W + bβ)T , ωl = (α,β, γ )T
(1)

whose terms differ by a sign whenever the variable b ap-
pears. For brevity of subsequent presentation, we introduce

Fig. 2 Top view of a frontally-placed camera pair
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br = b and bl = −b for the right and the left camera re-
spectively. Thus, for the ith camera, i = r, l, with perspec-
tive projection model and known focal length f , the follow-
ing equations relate the 3D camera motions and the optical
flow (ui , vi ) at the image point (x, y) arising from a 3D
scene point with depth Zi (Longuet-Higgins and Pradzny
1980):

ui = (W − biβ)x − f U

Zi

+ αxy

f
− β

(
f + x2

f

)
+ γy

= 1

Zi

utr
i + urot

i

vi = (W − biβ)y − f (V + biγ )

Zi

− βxy

f

+ α

(
f + y2

f

)
− γ x

= 1

Zi

vtr
i + vrot

i

(2)

where 1
Zi

(utr
i , vtr

i ) and (urot
i , vrot

i ) are the components of
the flow due to the translation and rotation respectively. We
assume that both cameras have the same focal length f .
Note that the translational flow contains terms that depend
on the platform rotation parameters β and γ , because these
platform rotations induce translations in the cameras. Elim-
inating the depth Zi from the respective pair of equations
gives us the differential epipolar constraint of the individual
camera:

uiv
tr
i − viu

tr
i = urot

i vtr
i − vrot

i utr
i , i = r, l (3)

whose bilinear nature has been noted by various authors
(Heeger and Jepson 1992; Ma et al. 2000; MacLean 1999;
Vieville and Faugeras 1995).

3.2 Quasi-Parallax

Conventional two-frame SFM works that do not leverage on
the structural constraint afforded by the two cameras usu-
ally suffer from the bas-relief ambiguity, especially under
small field-of-view (FOV). Here we make use of the struc-
tural constraint by collecting from the two cameras projec-
tion rays that are parallel to each other. We call the points
associated with such a pair of matching rays as matching
point (see Fig. 2). For the case of simple setup addressed
in this section, these are simply points with the same image
coordinates. These points have the desirable property that
their rotational flows are the same. Taking inspiration from
the classical parallax idea proposed by Rieger and Lawton
(1985), we subtract the two equations in (3) from one an-
other. This removes many of the rotational terms, thus en-

hancing translation pickup and alleviating the bas-relief am-
biguity:

urv
tr
r − ulv

tr
l − vru

tr
r + vlu

tr
l

= urot
(
vtr
r − vtr

l

) − vrot
(
utr

r − utr
l

)
(4)

Since the rotational flows at the matching pairs are equal,
we have omitted the subscript of the rotational flows urot

and vrot . Writing out the translational and rotational flows
in full, we obtain:

Uf (vr − vl) − Vf (ur − ul) + W(yur − yul − xvr + xvl)

= b
(
2f

(
xαβ + yβ2 − yγ 2) − 2xyαγ + (

2f 2 − 2y2)βγ

+ (yβ + f γ )(ur + ul) − xβ(vr + vl)
)

(5)

Clearly, when b = 0, we obtain perfect parallax. The
RHS of Eq. (5) vanishes and we can solve the translation
directly by linear least squares. In the general case of b �= 0,
the RHS is non-zero: this corresponds to the translational
flow component still containing induced terms caused by the
platform rotation. Thus, we term the resulting flow differ-
ence between matching points as quasi-parallax. Since our
approach is similar in spirit to the parallax approach, it en-
joys similar numerical advantages with regards to the bas-
relief ambiguity. Yet it circumvents the limitations of the
parallax approach mentioned in the preceding section be-
cause there is no need to restrict ourselves to flow pairs near
depth boundaries.

Collecting all the N equations from the entire set of
matching points, we can write the system of equations in
the following form:

Ax1 = b(Bx2) (6)

here x1 = (U,V,W)T , x2 = (αβ,β2, αγ,βγ, γ 2, β, γ )T ,
and the j th row of A and B are respectively as below (omit-
ting the subscript j on the RHS for brevity):

aj = (f vr − f vl, f ul − f ur, yur − yul − xvr + xvl)

bj = (
2f x,2fy,−2xy,2f 2 − 2y2,−2fy,

y(ur + ul) − x(vr + vl), f (ur + ul)
) (7)

The term bBx2 on the RHS in Eq. (6) can be regarded
as the residue arising from the quasi-parallax and its value
is typically very small due to the small baseline value b and
that most of the terms are second order in the rotational pa-
rameters.

3.3 Solving the Motion Parameters

As the RHS in Eq. (6) are negligibly small, we propose a
two-stage scheme to solve for the translation and rotation
separately.
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Step 1: estimate initial translation. We ignore the RHS
of (6) and solve the resulting homogeneous system Ax1 = 0.
The initial translation υ̂ is recovered up to a scalar unknown.

Step 2: estimate initial rotation. Given the current trans-
lation estimate υ̂ , we can now use the epipolar constraint
Eq. (3) to recover the rotation parameters. Equation (6) is not
suitable for rotation recovery because the rotational terms
are largely removed here. Writing out in full, we get Equa-
tion (8):

((
f 2 + y2)U − f Wx − V xy

)
α

+ ((
f 2 + x2)V − f Wy − Uxy

)
β

+ ((
x2 + y2)W − f Vy − f Ux

)
γ

+ bi

(
(uy − vx)β + (

β2 − γ 2)fy + f xαβ + f uγ

− xyαγ + (
f 2 − y2)βγ

)
= f Uv − f uV − vWx + uWy (8)

for i = r, l representing the right and the left cameras re-
spectively. Substituting the initial translation estimation υ̂ =
(sU, sV, sW)T (where s represents an arbitrary scale factor)
into (8) and collecting all the equations from both the right
and the left cameras, we obtain a system of equations in the
form of:

M ·
(

α,β, γ,
b

s
β,

b

s
γ,

b

s
αβ,

b

s
αγ,

b

s
β2,

b

s
βγ,

b

s
γ 2

)T

= M · θ = d (9)

The unknown vector θ contains both first order and
higher order rotational terms. Considering the typical val-
ues of the rotation and the term b

s
, the contribution of the

higher order terms can be ignored in the initial estimation
step.1 Thus:

Step 2.1: We simplify Eq. (9) to obtain:

M1 ·
(

α,β, γ,
b

s
β,

b

s
γ

)T

= M1 · θ1 = d (10)

where M1 is a N × 5 matrix comprising of the first five
columns from M. We can now solve the linear system and
the first three components of the solution vector θ1 corre-
spond to the initial rotation estimate ω̂0 = (α̂0, β̂0, γ̂0)

T .
Step 2.2: Refine the estimate ω̂0. Substituting the current

value of ω̂0 into the terms containing b
s

in (9) and rearrang-

1b is the baseline, typically of the order 0.1–0.3 m. s is the scale factor
that is associated with the initial translation estimate. Given that typical
translation velocity is of the order 0.05–0.1 m per unit time (frame) and
that the initial translation estimate is normalized, s is thus of the order
10–20. Therefore the ratio b

s
is much less than 1, further diminishing

the effect of the second-order terms.

ing, we obtain:

M2 ·
(

α,β, γ,
b

s

)T

= d (11)

We solve the above equation for an updated rotation
estimate. The newly obtained estimate is substituted back
into (9) to generate an updated (11) which is solved again
for a more refined solution. This process is repeated until
the solution converges and a stable rotation estimate ω̂ =
(α̂, β̂, γ̂ )T is obtained. Essentially we can make do with a
simple linearization because the second order effect is small.
Numerical tests conducted under a range of motion-scene
configurations and baseline values reported in the experi-
mental section show that the estimate usually converges to a
stable solution after two or three iterations.

Step 3: Refine the motion estimation.
Step 3.1: We substitute the current rotation estimate

(α̂, β̂, γ̂ )T back into x2 of (6) and form a new equation:

(A,−Bx2) · (xT
1 , b

)T = Ã · x̃1 = 0 (12)

We solve the homogeneous system (12) for an updated
translation estimate υ̂ . Obviously, if b is known, the absolute
value of the translation can be determined. Otherwise, only
the translation direction can be determined.

Step 3.2: Given this updated translation estimate υ̂ , we
use the scheme in step 2 to obtain a more updated rotation
estimate ω̂.

Step 3.3: If the current motion estimate differs from that
of the previous iteration by less than 0.1 %, stop. Otherwise,
repeat steps 3.1 and 3.2 until the solution is stable.

4 Extensions to the Basic Arrangement

In the natural world, one is met with eyes that are neither
purely frontal nor lateral. For instance, even a predatory
bird such as the Short-toed Snake-eagle does not have com-
pletely frontal eyes (see Fig. 1) (Martin 2007). Even a vi-
sual system possessing frontally-placed eyes may destroy
this simple arrangement via eye movements such as side-
way gaze and convergence. While it is possible to perform
image rectification to restore the parallel-axes stereo geom-
etry and then use the basic model solution, it is very much
against our philosophy of computational parsimony, because
feature correspondence would be needed to establish the rec-
tification transformation. Thus, if the quasi-parallax solution
is to be a useful strategy for locomotion at all, we must seek
extensions to the basic solution provided above.

4.1 Quasi-Parallax of Sideway Configuration

From the quasi-parallax framework introduced in the pre-
ceding section, it is an easy step to extend it to the case of
the two eyes gazing sideway.
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Fig. 3 Top view of the sideway configuration

Figure 3 shows the top view of a sideway configuration
where the two cameras have been both rotated by the same
angle φ around their Y axes and now gaze in a sideway di-
rection. We call φ the sideway gaze angle.

If we let the new world coordinate system be Op-
XpYpZp , and if the platform motion expressed in this coor-
dinate system is υ = (U,V,W)T and ω = (α,β, γ )T , then
the 3D camera motions expressed in the respective camera
coordinate systems are, for i = r, l:

υi = (U − βbi sinφ,V + γ bi cosφ + αbi sinφ,

W − βbi cosφ)T

ωi = (α,β, γ )T

(13)

Carrying out analogous operation as before, we obtain
the counterpart of Eqs. (5) and (8), that is, the quasi-parallax
equation (14) and the two epipolar constraint equations (15)
(i = r, l). See Eqs. (14), (15):

Uf (vr − vl) + Vf (−ur + ul) + W
(
y(ur − ul)

− x(vr − vl)
)

= b cosφ
(
2f xαβ + 2fyβ2 − 2xyαγ + 2f 2βγ

− 2y2βγ − 2fyγ 2 + yβur + f γ ur + yβul + f γ ul

− xβvr − xβvl

) − b sinφ
(
2xyα2 − 2x2αβ + 2y2αβ

− 2xyβ2 + 2fyαγ − 2f xβγ − f αur − f αul

− fβvr − fβvl

)
(14)

(
f Wx − f 2U + V xy − Uy2)α + (

f Wy − f 2V − V x2

+ Uxy
)
β + (

f Ux − Wx2 + f Vy − Wy2)γ
+ bi cosφ

(
(vx − uy)β − f uγ − f xαβ

− fy
(
β2 − γ 2) + xyαγ − (

f 2 − y2)βγ
)

− bi sinφ
(
f uα − xyα2 + f vβ + (

x2 − y2)αβ

+ xyβ2 − fyαγ + f xβγ
)

= f uV − f Uv + vWx − uWy (15)

While there are more terms in these equations, the na-
ture of the equations are essentially the same as those of (5)
and (8), since the rotational flows at the matching points are

Fig. 4 Top view of the convergent configuration

still the same. Thus, a scheme very similar to that in Sect. 3.3
can be used to solve for the motion parameters and the un-
known φ. Readers can refer to Appendix for more details.

4.2 Quasi-Parallax of Convergent/Divergent Configuration

The two eyes or cameras may not be parallel to each other,
either because they converge to fixate on some object at
some finite distance, or because the optical axes are diver-
gent even in the relaxed state. Without loss of generality,
we represent such convergent or divergent configuration as
that shown in Fig. 4, where the right and the left cameras
are rotated by an angle of θr = θ and θl = −θ around their
Y axes respectively and the WCS Op-XpYpZp is as that in
Sect. 3.1. We define θ as the convergence angle.2 Given mo-
tion υ = (U,V,W)T , ω = (α,β, γ )T of the platform, the
individual camera motions expressed in their own camera
coordinate systems are, for i = r, l, as follows:

υi = (
U cos θi − (W − biβ) sin θi,V + biγ,

(W − biβ) cos θi + U sin θi

)T (16)

ωi = (α cos θi − γ sin θi, β, γ cos θi + α sin θi)
T

Clearly, the two camera rotations ωr and ωl are different.
This poses a problem for the rotation cancellation step in our
quasi-parallax formulation. It seems clear that one must ac-
cept compromise if we were to retain the virtue of simplic-
ity in our formulation. Here we assume that the angle θ is
small enough, so that most of the rotational flow can be can-
celed by the subtraction operation carried out at correspond-
ing matching points with the same (x, y) coordinates. This
assumption on θ may not be as restrictive as it seems for
the following two reasons. Firstly, any convergent eye move-
ments during high-speed locomotion are likely to be for ob-
jects at some distances away, and thus the convergence angle
will be small. Secondly, even for significantly divergent eye
configuration like that of the Short-toed Snake-eagle illus-
trated in Fig. 1, all is not lost. If the eyes are sufficiently
spherical, we are free to position the Z-axes of the two cam-
eras appropriately such that for the regions of the two eyes

2See Sect. 5.9 for the asymmetric case.



52 Int J Comput Vis (2013) 101:45–63

Fig. 5 Eyes with divergent optic axes. (a) Z-axes placed near the
frontal direction so that the angle of divergence θ is small. (b) θ can
be made to approach zero if the visual field of each eye extends suffi-
ciently into the opposite hemisphere

facing the front (the regions shaded in grey in Fig. 5(a)), it
is equivalent to a slightly divergent binocular configuration
with small angle of divergence θ . Note that if the visual field
of each eye extends sufficiently into the opposite hemisphere
(as in Fig. 5(b)), we can even position the Z-axes of the two
cameras such that it approaches the simple parallel configu-
ration. Given this small θ assumption, we make the follow-
ing simplifications: cos θ ≈ 1, cos2 θ ≈ 1, and sin2 θ ≈ 0.
Carrying out the same operations as before, we obtain the
quasi-parallax equation as (17) and the epipolar constraint
equations (for i = r, l) as (18):

U
(
f vr − f vl + (

uly + ury − vlx − vrx + 4f xα

+ 2f 2γ − 2x2γ + 2fyβ
)

sin θ
) + V

(
f ul − f ur

+ (2fyα − 2xyγ ) sin θ
)

+ W
(
(vl − vr)x − (ul − ur)y − (

f vl + f vr + 2xyβ

+ 2f 2α − 2x2α − 4f xγ
)

sin θ
)

= b
(
(ul + ur)(f γ + yβ) − (vl + vr)xβ

+ (
2f 2 − 2y2)βγ + 2fy

(
β2 − γ 2)

− 2xyαγ + 2f xαβ + (vl − vr)fβ sin θ
)

(17)

α
(
V xy − f 2U + f Wx − Uy2 + (

f Vy + f 2W + 2f Ux

− Wx2) sin θi

) + β
(
Uxy − f 2V − V x2 + f Wy

+ (f Uy − Wxy) sin θi

)

+ γ
(
f Vy + (

f Ux − Wx2 − Wy2) + (
f 2U − 2f Wx

− Ux2 − V xy
)

sin θi

) + bi

(
(vx − uy)β − f uγ

− f xαβ + xyαγ − fyβ2 − (
f 2 − y2)βγ

+ fyγ 2 + (
f vβ + xyβ2 + fyαγ − xyγ 2 + x2αβ

− f 2αβ + 2f xβγ
)

sin θi

)
= f uV + vWx − f Uv − uWy

+ (f vW + Uvx − Uuy) sin θi (18)

We use the following scheme to solve for the motion pa-
rameters and the convergent angle θ .

Step 1: Estimate initial translation and sin θ . We ignore
the RHS of (17) as before, and also further omit the terms
containing rotation parameters in the LHS as they are all
coupled with sin θ and thus constitute second order effects.
As a result, we obtain:

U
(
f vr − f vl − (vlx + vrx − uly − ury) sin θ

)
+ V (f ul − f ur) + W

(
vlx − vrx − uly + ury

− (f vl + f vr) sin θ
) = 0 (19)

Gathering all such equations, we solve the resulting
homogeneous system A4y = 0 for the initial direction
of translation and the initial value of sin θ . Here y =
(sU, sUsin θ, sV, sW, sW sin θ)T is treated as a vector of
independent unknowns, and s is the unknown scale factor.
The translation can only be solved up to the scale factor s,
but the value of sin θ can be obtained as the average of the
ratio of the first two and the last two components of y.

Step 2: Estimate initial rotation. Given y, we can now
solve Eqs. (18) for the rotation parameters. Dropping second
order rotational terms from (18), we obtain Eq. (20):

α
(
V xy − f 2U + f Wx − Uy2 + (

f Vy + f 2W

+ 2f Ux − Wx2) sin θi

) + β
(
Uxy − f 2V − V x2

+ f Wy + (f Uy − Wxy) sin θi

)
+ γ

(
f Vy + f Ux − Wx2 − Wy2 + (

f 2U − 2f Wx

− Ux2 − V xy
)

sin θi

) + bi(vrxβ − uryβ − f urγ )

= f urV − f Uvr + vrWx − urWy + (f vrW

+ vrxU − uryU) sin θi (20)

Gathering all such equations and solving the resulting
linear system, we can obtain the solution vector r init =
(α,β, γ, bβ/s, bγ /s)T . The dependency between the com-
ponents of r init is ignored and the initial rotation estimate is
simply obtained as the first three components of r init . The
newly obtained estimate is substituted back into Eqs. (18)
to take into account the second order rotational terms. The
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updated (18) is solved again for a more refined rotation esti-
mate. This process is repeated until the solution converges.

Step 3: Refine motion estimate.
Step 3.1: Substituting the current rotation estimate

into (17), we obtain an improved solution for transla-
tion and sin θ by solving a new homogeneous system
A5y1 = 0. Here, we need to specify the unknown y1 =
(sU, sUsin θ, sV, sV sin θ, sW, sW sin θ, sb, sbsin θ)T .

Step 3.2: Given y1, we repeat step 2 to refine the rotation
estimate.

Step 3.3: If the current motion estimate differs from that
of the previous iteration by less than 0.1 %, stop. Otherwise,
repeat steps 3.1 and 3.2 until the solution is stable.

4.3 Implementation Details

We first use the variational method of Bruhn et al. (2005) to
obtain 100 % dense flow field. Clearly, not all flow estimates
have the same reliability. Following (Bruhn et al. 2005), an
energy-based confidence measure cenergy is used to assess
the relative reliability of the flow estimate (u, v) at every
image location. If Ei is the energy functional that penalizes
deviations from model assumptions (such as brightness con-
stancy and smoothness) at pixel i, we define the confidence
measure cenergy to be inversely proportional to Ei :

cenergy = 1

Ei + ε2
(21)

Here ε serves as a small regularisation parameter that pre-
vents the denominator from becoming singular. Equipped
with the above confidence measure, we divide the flow field
of each camera into 20 confidence levels. In our experiment
with 640 × 480 images, we do a first cut by selecting only
matching points with confidence level at level 16 and above
(that is, the top 25 %). The confidence level of a matching
pair is taken to be the lower of the two confidence levels of
the two flow measurements.

Besides the confidence criterion, we also need to make
sure that the flow difference at matching points is not too
small with respect to the noise expected. For this purpose,
we add a further selection measure cmag:

cmag =
√

(ur − ul)2 + (vr − vl)2

max(|(ur , vr)|, |(ul, vl)|)
We use the following thresholding scheme to trim the num-
ber of matching points to the top 150 pairs:

cmag > τ(i) (22)

where the threshold τ(i) depends on how much confidence
we have in the quasi-parallax measurements, as indicated by
the confidence level i. In our experiment, we use a simple
linear relationship τ(i) = −0.05i + 1.15 (that is, τ varies
linearly between 0.35 to 0.15 for i ranging from 16 to 20).

5 Experiments on Synthetic Data

We first carry out experiments on synthetic but realistic data
by using the Brown range image database (Lee and Huang
2000) which contains many static natural scenes. Figure 6
shows some typical scenes in the database: forest, outdoor
and indoor. Unless otherwise stated, we use scene (a) in
the simulations that ensue. The average scene depth of this
scene is about 7 m. We endow the scene with 3D motions,
and project the points and their flows onto each camera’s
image plane. As the relative motion between the cameras
and the scene are known, the result of our method can be
evaluated by comparing with the ground truth. Note that
while the direction and magnitude of the rotation can be es-
timated, only the direction of the translation is recovered,
with its magnitude only recoverable when b is known. The
camera pair is in the ideal frontal parallel configuration, un-
less otherwise noted, as from Sect. 5.7 onwards. Through a
series of experiments, we clarify the effects of various fac-
tors such as motion-scene configuration on the performance
of our quasi-parallax method. Its performance is also com-
pared against that of the so-called gold standard bundle ad-
justment method.

5.1 Different Motion Configurations

We present different 3D motions with varying parameter:
translation-to-rotation ratio ε (ε = 0.1,0.2,1,5,10) so as to
investigate the effect of motion configurations. The value of
ε is computed as the ratio of the total magnitude of the trans-
lational flow and that of the rotational flow from all available
points. We set other parameters as follows: the focal length
is 6 mm, FOV is 50◦, b = 0.2 m, and the image dimension
is 600 × 600 pixels (5.6 × 5.6 mm in metric unit).

We compare the recovered motion parameters (υre, ωre)
with the ground truth (υgt , ωgt ). The results are shown in
Table 1. The errors of the translation υ and the rotation ω are
defined as the angles between υre and υgt , and between ωre

Fig. 6 Range images of typical scenes. (a) Forest 1, (b) Forest 2, (c)
Outdoor and (d) Indoor scenes
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Table 1 Motion recovery for
different ε ε Motion parameter Error of motion estimation

υgt (cm/s) ωgt (×0.001 rad/s) υ direction υ magnitude ω direction ω magnitude

10 (3,3,11) (0.5,0.5,0.1) 0.0006 0.0004 0.0002 0.0000

5 (2,2,8) (0.5,0.5,0.1) 0.0031 0.0010 0.0009 0.0001

1 (1,1,5) (0.5,0.5,0.1) 0.0079 0.0013 0.0011 0.0006

0.2 (1,1,3) (1,2,0.23) 0.0571 0.0821 0.0083 0.0039

0.1 (1,1,2) (2,4,0.58) 0.2310 0.2021 0.0322 0.0407

Fig. 7 Estimation errors as a function of noise level, and over a range
of ε. Dotted curves represent the case where all quasi-parallax mea-
surements are used, solid curves represent the case that only the top
150 quasi-parallax measurements are retained. The symbol N.A. repre-
sents that the solution does not converge

and ωgt respectively. The error in the magnitude is defined
as | ‖υre‖

‖υgt‖ − 1| for translation and | ‖ωre‖
‖ωgt‖ − 1| for rotation.

Without noise in the flow input, the results in Table 1
look fairly good. Yet, even without noise, it can be seen that
with decreasing ε, the accuracy of the system deteriorates.
At ε = 0.1, the translation recovery incurs significant errors
of 20 % or more in both direction and magnitude. It could
be that with rotation-dominant motion (small ε), the qual-
ity of the quasi-parallax degrades with the weak translation.
This is especially a problem since we did not impose any se-
lection criterion on the quasi-parallax measurements in this
experiment.

We now add isotropic, Gaussian noise to the 2D mo-
tion field, with the standard deviation of the noise amplitude
ranging from 0 % to 10 % of the length of the individual 2D
motion vector. One hundred separate runs are carried out for
each noise level, and the mean values of the direction errors
are plotted in Fig. 7 as dotted curves. We only plot the direc-
tion errors since the trend is similar for the magnitude errors
(and in the magnitude case, the error remains bounded by
16 % for the range of conditions tested). Note that for some
noise level, no stable solution can be obtained (indicated as
N.A. in Fig. 7). This is not surprising since in this simula-
tion, all quasi-parallax measurements are used, without con-
sidering their reliability.

We now improve the quality of the quasi-parallax by se-
lecting the top 150 pairs of matching points ranked accord-
ing to the magnitude of the flow difference (here the confi-

dence level of the flow does not come in since we are not
dealing with real images). The improved results are plotted
in Fig. 7 as the solid curves. From these results, we con-
clude that: (1) selecting good quasi-parallax plays an impor-
tant role in reducing the negative impact caused by noise
in the optic flow input; (2) our quasi-parallax scheme can
handle a wide spectrum of motions ranging from translation-
dominant motion (ε = 10) to rotation-dominant motion (ε =
0.1); and (3) the accuracy of the motion estimates improves
with increasing the translation-to-rotation ratio ε.

5.2 Different b

The distance b is half of the baseline which is one of the
most important parameters of any stereo configuration. It
also plays an important role in our quasi-parallax frame-
work, as it appears as the multiplier in the RHS of Eq. (6). It
determines the magnitude of the RHS and thus might affect
the convergence of our iterative algorithm which is initial-
ized by ignoring the RHS. On the other hand, it is also in-
tuitively clear that large b improves the quality of the quasi-
parallax, because it is more likely to yield matching points
with significant depth differences.

In this group of experiments, we vary the offset b from
0.01 m to 0.5 m, with ε = 1 and other parameters the same
as before. Figure 8 shows the errors in the motion estima-
tion with different offsets and different noise levels. Gener-
ally, there is an increase in performance with larger b, with
the improvement leveling off when the offset exceeds a cer-
tain threshold. The first conclusion is that under the range of
operating conditions tested, the effect caused by initially ig-
noring the RHS of Eq. (6), even under large b, is negligible.
As for the decreasing errors with b in Fig. 8(a), (b), and (c),
the phenomenon can be explained by Fig. 8(d),which ex-
presses the relationship between the number of good match-
ing rays (defined as those with cmag > 0.2) and b. Intuitively,
increasing baseline is conducive to forming good parallax
because it is more likely to have large depth differences in
the matching points. Having a larger pool of good paral-
lax measurements to choose the top 150 matching points
in turn improves the quality of the input to the algorithm.
However, once the baseline is large enough, the depth dif-
ference in the matching pair is no longer correlated to the
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Fig. 8 Estimation errors as a function of offset b. (a) Translation di-
rection. (b) Rotation direction. (c) Rotation magnitude. (d) Number of
good matching rays defined as those with cmag > 0.2

baseline, thus explaining the plateau in the plots. Thus, in
the design of a quasi-parallax-based system, we should seek
the point beyond which increase in baseline does not lead
to further improvement in error performance. For our case,
where the scene depth is at least 10 m away, the threshold
seems to be b = 0.2 m from the plots in Fig. 8. For nearer
scene depths such that the depth changes relative to the aver-
age scene depth are larger, the threshold will be smaller. We
repeat the experiments with the same forest scene but with
the scene content placed much closer at an average depth
of 3.5 m and at 2 m. At these settings, which seem closer
to the conditions under which some animals navigate in en-
closed forests, we obtain a threshold value of b = 0.05 m
and b = 0.03 m respectively. These values of b seem to be
in keeping with the eye separation distances found in some
mammals.

5.3 Different Scenes

The effect caused by different scenes is similar to that caused
by b in the preceding subsection, as different scene types
with different degree of roughness has a direct impact on
the amount of good quasi-parallax measurements. Here, we
perform experiment on typical scenes individually, includ-
ing the two forest scenes, the outdoor and the indoor scenes
shown in Fig. 6. The conditions for this group of experi-
ments are as follows: ε = 1, FOV = 50◦, the noise level
(noise-to-signal ratio) = 5 %, and the offset b ranging from
0.05 m to 0.5 m.

Figure 9 shows that the performance on the forest scene
is better than that on the indoor scene given the same off-
set b. Such observation can be explained from the fact that

Fig. 9 Estimation errors as a function of offset b and different scenes
(a: forest 1, b: forest 2, c: outdoor, d: indoor). (a) Translation direction.
(b) Rotation direction. (c) Rotation magnitude. (d) Number of good
matching rays defined as those with cmag > 0.2

the indoor scene contains much more planar areas than the
forest scene, and nearly zero parallax is generated over much
of the image when the offset b is small, which does not lend
to numerical stability. Figure 9(d) corroborates our explana-
tion.

5.4 Different FOV

In addition to baseline, the FOV is another important param-
eter of a vision system, especially so for the function of mo-
tion estimation. We let the FOV range from 10◦ to 60◦, fix-
ing ε = 1 and with other parameters remaining unchanged.
Clearly, by virtue of the fact that a smaller FOV is viewing
a smaller part of the scene, there will be smaller amount of
depth changes; thus the quality of the quasi-parallax mea-
surements will be affected, resulting in the deterioration of
performance, as shown in Fig. 10(a) and (b). However, this
is not our main point of interest here. What we are keen to
get at is that, given the same quality in the quasi-parallax
measurements, do we expect the algorithm’s performance to
vary with the change in the FOV per se? For this purpose,
we control the quality of quasi-parallax input—measured by
cmag, the magnitude of the flow difference of the matching
points—to be the same, despite changes in the FOV.

As can be seen from Fig. 10(c) and (d), the errors in
the motion estimates are relatively independent of the FOV.
Thus the deciding factor for the accuracy of the quasi-
parallax based method is the amount of depth difference,
not the FOV per se.
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Fig. 10 Estimation errors as a function of the FOV. For (a) and (b),
the quality of the quasi-parallax input varies (naturally) with the FOV;
for (c) and (d), we control cmag, the quality of the quasi-parallax input,
to be the same despite changes in the FOV

5.5 Comparison Against Bundle Adjustment (BA)

In this section, we compare our method against the solu-
tion obtained by the so-called gold standard BA algorithm.
The purpose of the comparison is not intended to establish
the superiority of our method over BA or otherwise; in any
case, the BA method is usually applied to scenarios where
the differential techniques cannot be applied, and more im-
portantly, it usually serves to refine the initial estimates from
other algorithms. The purpose of the following comparison
is rather to shed some light on the issue of bas-relief ambi-
guity which usually plagues two-frame SFM. While the su-
periority of the parallax scheme has been demonstrated for
spherical FOV and for a pair of laterally placed eyes cover-
ing diametrically opposite viewing sphere (Hu and Cheong
2009; Lim and Barnes 2008), do we expect the parallax-
based approach to exhibit the same disambiguation of the
bas-relief problem for the frontally-placed eyes covering a
small part of the viewing sphere, especially in comparison
to the conventional two-frame SFM approached represented
by BA?

We applied the extended BA algorithm proposed in Hu
and Cheong (2009), with appropriate modifications taking
into account the obvious geometry difference in the eye
configuration. The outline of the extended BA are as fol-
lows: (1) use linear subspace method to obtain an initial es-
timate of each camera motion separately; (2) from the cam-
era motion estimates, obtain an initial estimate of the global
platform motion; (3) bundle adjust the global platform mo-
tion by minimizing the difference of the actual flow and

Fig. 11 Comparison of quasi-parallax (QP) and Bundle adjustment
(BA) methods under different FOV. For (a) and (b), ε = 1; for (c) and
(d), ε = 0.1

the back-projected flow generated from the platform mo-
tion.

The conditions of the comparison are as follows: b =
0.2 m, ε = 1 and 0.1, the noise level in the flow is 5 %,
and the FOV ranging from 10◦ to 60◦. The top 150 pairs
of matching points are used by our quasi-parallax (QP) al-
gorithm as before, whereas 150 feature points are selected
randomly for each camera in the BA algorithm. In Fig. 11,
the motion estimation results of the BA algorithm and our
QP method are compared. It is clear that QP outperforms
BA significantly under small FOV; however, given sufficient
FOV (e.g. FOV > 45◦), their performances are comparable
since the bas-relief ambiguity is no longer a problem. In
view of earlier results such as (Hu and Cheong 2009) for
lateral eyes and the current set of results for frontal eyes,
we can conclude that the parallax-based method is generally
more effective in removing the bas-relief ambiguity, and this
superiority is independent of having eyes covering diametri-
cally opposite viewing sphere.

5.6 Frontal vs Lateral Configuration

We now directly pit the performance of the frontal eyes ver-
sus the lateral eyes in resolving the bas-relief ambiguity us-
ing the quasi-parallax approach. Again, the noise level is
5 % of the flow. One hundred separate runs are done for
every condition tested and the mean value is reported. The
same forest scene is used as before. The image content seen
by the lateral eyes can be generated from the same forest
scene without any problem, since the Brown range data is
captured from a sensor encompassing a horizontal FOV of
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Fig. 12 Estimation errors of the frontal and lateral configurations as
a function of offset. (a) Translation direction. (b) Rotation direction.
(c) Number of good matching rays defined as those with cmag > 0.2

Fig. 13 Estimation results of frontal and lateral configurations with
different scenes

almost 270◦. We use the same number of matching points
(150 pairs) for both configurations.

We use the same parameters as in Sect. 5.2 but with the
offset b changing from 0.01 m to 0.5 m. Figure 12 shows
the results. As was shown in Sect. 5.2, in the frontal case,
larger b results in matching points with larger depth differ-
ences, leading to better results until the improvement in per-
formance plateaus off at b ≈ 0.2 m. In the lateral case, the
performance is basically independent of the offset value b,
as the two cameras are always viewing very different parts
of the scene, irrespective of the value of b. Figure 12(c)
plots the relationship between the number of good matching
pairs and b, which also corroborates the preceding conjec-
ture. It also reveals that when the number of matching points
reaches comparable level in both eye configurations, there is
then no significant difference in the performance.

When we repeat the experiments with different scene
type such as an indoor scene, we obtain very similar results
(Fig. 13). The performance does not depend on the configu-

Fig. 14 Estimation results as a function of the sideway angle

ration of the eyes, but more on the number of good match-
ing points available. In the case of indoor scene, due to the
largely planar surfaces seen in such scenes, the number of
good matching points in the frontal eyes may never reach
that of the lateral eyes, at least for the range of practical
baselines tested.

From the above, we can conclude that there is no inherent
advantage of having a lateral eye over having a frontal eye
configuration, as far as resolving the bas-relief ambiguity is
concerned, save for the fact that the lateral eye configuration
is always more likely to yield good parallax measurements.

5.7 Estimation Results under Sideway Gaze

The sideway gaze configuration contains an additional un-
known φ which might introduce new numerical instability.
Here, we perform simulation on the forest scene as φ varies
from −30◦ to 30◦, with other parameters being: FOV = 50◦,
b = 0.2 m, ε = 1, and the noise level is 5 %.

Figure 14(a) shows the mean error of the recovered φ

value and Fig. 14(b) depicts the mean error of the recov-
ered motion parameters over 100 trials. Clearly, the quasi-
parallax framework remains effective when the sideway an-
gle is within the range of 30◦. The slight asymmetry of the
result is due to the fact that with different φ, the cameras are
observing different parts of the scene.

5.8 Estimation Results under Convergent Configuration

The convergent configuration not only introduces an addi-
tional unknown θ , it also results in an incomplete cancella-
tion of the rotational components in the quasi-parallax mea-
surements. We perform simulation on the convergent con-
figuration with θ varying from −30◦ to 30◦, and other pa-
rameters same as those in the preceding section.

Figure 15(a) shows the mean error of the recovered con-
vergence angle θ and Fig. 15(b) depicts the mean error of
the recovered motion directions over 100 trials. It seems
that the quasi-parallax method remains effective, especially
if the total angle between the two Z-axis 2θ is less than 30◦,
under which the motion direction errors remain less than
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Fig. 15 Estimation result as a function of the convergence angle

Fig. 16 The right camera perturbed by an angle η from its (a) frontal,
and (b) convergent configurations

about 10◦. Even as this total angle 2θ reaches towards the
value of 60◦, the error performance degrades gracefully with
errors less than 25◦. Thus, our quasi-parallax method re-
mains a viable scheme for rapidly estimating heading di-
rections during locomotion, even if the eyes are moderately
convergent due to fixation, or divergent because the bony
orbits are divergent.

5.9 Sensitivity Analysis

In practice, there might be imperfection in the camera pos-
tures such that they deviate from the canonical configura-
tions modeled in the preceding sections. In this section, we
conduct two experiments to test the sensitivity of our recov-
ery methods when such modeling errors are present. Refer-
ring to Fig. 16, we perturb the right camera by an angle η so
that the binocular setup deviates from the perfectly parallel
case (Fig. 16(a)) and from the symmetrical convergent case
(Fig. 16(b)).

The other parameters were as follows: FOV = 50◦, b =
0.2 m and ε = 1. Both indoor and forest scenes were investi-
gated. We also tested the case of perfect flow field and when
5 % flow noise is added. Figure 17(a) and Fig. 17(b) show
the mean errors of the recovered translation direction for the
frontal and convergent configurations respectively. On the
whole, both the algorithms for the respective configurations
are similarly affected by the perturbation; they fail to con-
verge when the perturbation is more than 4◦. Note that in
Fig. 17, the estimation result for the case of positive η is
better than that of negative η; this is nothing but the pre-
viously discussed fact that a stronger divergence resulting

Fig. 17 Estimation errors of the translation direction as a function of
the perturbation angle η, for (a) frontal, and (b) convergent configu-
rations. For each case, both indoor and forest scenes, as well as noisy
(5 % standard deviation) and noiseless flows are investigated

from positive η gives rise to better quasi-parallax than the
case of negative η, as the observed scene content between
the two cameras is more different.

From the preceding finding, it is evident that if significant
eye convergence can take place during locomotion, there is a
need to extend the basic model in Sect. 3, and instead use the
extensions discussed in Sect. 4. With the extended model, as
we have shown in Sect. 5.8, the total angle between the two
Z-axis can range up to 30◦. While the convergent model is
itself also sensitive to deviation from symmetry, we expect
such asymmetry to be much less prevalent and its range of
deviation to be small. Thus, under most cases, the extended
models presented in this paper should be adequate for most
practical situations.

5.10 Concluding Remarks

We have discussed at length the effects of various factors
such as different camera and motion-scene configuration on
the performance of our quasi-parallax method. It is appo-
site to summarize some of the main points and assumptions
here:

– Our method is intended to work with a camera pair with
a largely frontal-parallel configuration, or parallel with a
sideway gaze angle. In both cases, the modeling equations
((5) and (14)) are exact, though in solving them with a lin-
ear least squares scheme, we have dropped various second
order terms.

– Our method can be extended to the case of a camera pair
in a convergent/divergent configuration if the angle of
convergence/divergence θ is small enough, of if the con-
figuration of the eyes allows the Z-axis to be repositioned
such that θ is small. Despite the inexact cancellation of
the rotational terms, the recovered motion direction errors
remain less than 10◦ when the total angle between the two
Z-axis 2θ is as large as 30◦.

– All the above modeling and analysis are based on the
symmetric case. In practice, there might be non-ideal
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deviations from this symmetry. For instance, each cam-
era might converge/diverge somewhat differently, or each
camera might tilt differently too. The sensitivity analysis
in the preceding subsection deals with the most common
form of asymmetry and shows that the extended model
can further tolerate up to 4◦ of asymmetry in the conver-
gence/divergence angle. We expect other asymmetry such
as different degree of tilt to be less likely and its effect is
likely to be small too. The camera focal length has also
been assumed to be known and the same. For the case
of different but known focal length, we can scale the im-
ages appropriately (which amounts to changing its focal
length) and the same method can be applied. The situa-
tion where the focal length is unknown would be signif-
icantly more difficult and can be a topics for future re-
search.

6 Experiments on Real Scenes

In our experiment on real data, we mounted a frontally par-
allel pair of synchronized cameras on a mobile platform,
with the offset b being about 0.1 m. We use two Dragon-
fly cameras from Point Grey Research with 50◦ FOV each.
The frame rate is 30 frames per second and the image size is
640 × 480 pixels. Since no ground truth is available to eval-
uate our ego-motion estimation result directly, we compare
our results against those obtained by inputting the four im-
ages involved to the Bundler software (Snavely et al. 2008)
which is based on BA. We also color-code the dense depth
maps that are reconstructed based on the motion parameters
estimated by QP and by Bundler respectively, from which
we can make some observation about the accuracy of the
estimated motion parameters. Various indoor and outdoor
scenes are tested and the results are shown below.

The first column of Fig. 18 is the original image of the
scene; the second column depicts the confidence levels of
the flow (the red, green and blue pixels represent the top
three confidence levels respectively), and the third column
depicts the 100 % dense depth map reconstructed from QP,
displayed as chroma-depth images with warm colors rep-
resenting near depths and vice versa. In order to compen-
sate for the effect of noise in real images, we regard those
pixels with negative depths or very large positive depths as
incorrect, and instead fill in the depth values from neighbor-
ing areas using a procedure similar to image quilting used
in texture synthesis (Alexei and William 2001). From vi-
sual inspection, it can be seen that the recovered depth is
in good qualitative agreement with the actual scene. In par-
ticular, scene (a) is a quite textureless case and yet we can
recover a reasonably good dense depth map.

We tabulate in Table 2 the difference in motion estimates
recovered by the QP approach and the Bundler approach.

Fig. 18 Results of six real image sequences with moderate FOV (50◦).
For each sequence, the left image depicts the scene, the middle those
matching points with the top three confidence levels, and the right the
dense depth map reconstructed from QP

As can be seen, the difference is small. Roughly speaking,
indoor scenes (scenes a and b) exhibit greater differences
in the recovered motion estimates. It is not clear, however,
which approach yields a better results under this kind of
scenes. The QP approach suffers from a lack of high-quality
parallax measurement in this kind of scenes with many pla-
nar structures, whereas for the Bundler approach, the effec-
tive FOV is small due to the lack of distinctive features. To
shed some light on this issue, for each approach, we recon-
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Table 2 Difference in the
motion parameters and the
number of pixels with negative
recovered depth recovered by
QP and by Bundler

Scene Translation
direction (◦)

Rotation
direction (◦)

Rotation
magnitude (%)

#negative depth
(QP)

#negative depth
(Bundler)

a 2.193 1.228 4.1 43 62

b 3.427 1.371 4.7 42 47

c 1.432 0.826 2.0 38 34

d 1.493 0.846 2.2 41 36

e 1.329 0.788 1.7 37 43

f 1.745 0.963 2.6 41 38

struct depths from the estimated motion parameters using
the flow equations. It is known that the recovered depths near
the estimated focus of expansion (FOE) are very sensitive to
the accuracy of the motion estimation (Cheong et al. 1998).
In particular, the reconstructed depths in the image region
between the true and the estimated FOE are likely to have
negative values. Hence we can use the amount of negative
depths as a rough gauge for the accuracy of the motion esti-
mates. In Table 2, we list in the last two columns the number
of negative depths recovered from QP and Bundler respec-
tively. In the case of scene (a), the negative depth region
is clearly larger for the Bundler approach, indicating that its
motion recovery contains a larger error. For other scenes, we
obtain comparable statistics from both approaches. Thus, at
50◦ FOV, there is generally no difference in performance be-
tween the two approaches, corroborating the results obtained
in Fig. 11.

Next, we compare the performance of QP and Bundler
under the difficult scenario of small FOV (25◦) and scenes
depicting man-made environment. Here, the difference in
performance between the two approaches is much more pro-
nounced. From Fig. 19, we can clearly see the difference in
extent of the negative depth regions (the black regions over-
laid on the chroma depth maps).3 Thus, we can conclude that
QP is better able to resolve the bas-relief ambiguity com-
pared to conventional BA-based approach.

Lastly, we report on the amount of computations incurred
by the two algorithms. Computation times are reported for
a Dual-Core 2.5 GHz Intel processor executing C++ codes.
Excluding the preprocessing steps (flow estimation for QP
and SIFT feature detection for Bundler) and the depth re-
construction step, the average processing times on 640×480
images are 1.300 s for QP and 6.713 s for Bundler. If we run
the algorithms on larger images (2400 × 1800), the corre-
sponding processing times are 2.337 s for QP and 11.597 s
for Bundler.

3The geometry of the negative depth areas has been algebraically char-
acterized by the Cremona transformation in terms of the errors in the
estimated camera motion parameters (Cheong and Ng 1999).

Fig. 19 Depth reconstruction results under small FOV of 25◦. The
second column is the result from Bundler and the third column from
QP. The black pixel represents point whose recovered depth is negative

7 Conclusions

It is a commonplace that binocular overlap in the two eyes is
utilized by the visual system as a form of stereoscopic depth
cues. Yet empirical observation of the natural world gives
us no warrant for supposing that stereopsis exists widely in
vertebrates, still less birds. Given this lack of empirical ev-
idence for stereopsis, and if we think it unlikely that nature
will ignore the binocular overlap, it should then be possi-
ble for the binocular overlap to be exploited in some other
way. In this paper, we showed that the arrangement of two
frontally placed eyes—whose optical axes may or may not
be parallel—can be leveraged for quasi-parallax instead of
binocular disparities and we have demonstrated its feasibil-
ity over both synthetic and real data. Indeed, quasi-parallax,
with the better disambiguation of translation and rotation
over two frames, and the rapid processing that it entails,
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seems to us a more realizable and useful alternative during
locomotion. It is more realizable because it involves mere
matching of visual rays that are (approximately) parallel in
directions, without the heavy optimization needed for solv-
ing the correspondence problem, and simple linear algebra
for solving the 3D motion parameters. It is useful because
it resolves the traditional difficulties associated with using
parallax in a single image. It is particularly useful for loco-
motion because it provides a reasonably accurate translation
and rotation estimates within a reasonable range of conver-
gence angle θ and sideway gaze angle φ, and doing so in
a real-time manner without deliberate processing. We feel
that such a solution is not less useful because it exploits a
particular eye topography and its general validity cannot be
established for all θ and φ. To crave for a generally valid
solution for all tasks may be a deep intellectual need but to
allow such a need to dictate the design of a visual system
that can move about in the real world is a symptom of an
equally deep scientific fallacy.

Appendix: Solving the Motion Parameters for Sideway
Configuration

To solve the motion parameters and the sideway angle φ, we
use the following scheme which is highly similar to that of
Sect. 3.3. First, we note that by collecting all Eqs. (14) from
N matching points, we can write the system of equations in
the following form:

A3x3 = b cosφ(B3x4) + b sinφ(B4x5) (23)

Here, x3 = (U,V,W)T .
Step 1: We ignore the RHS of (23) at first, and obtain

the initial translation estimate υ̂ up to a scalar factor s by
solving the homogeneous system A3x3 = 0.

Step 2: Given υ̂ , we now turn to Eq. (15) to solve for
the rotation parameters and the sideway angle φ. Substitut-
ing the initial translation estimation υ̂ = (sU, sV, sW)T into
(15) and ignoring the higher order terms in the rotational pa-
rameters such as αβ and βγ , we gather all measurements to
obtain:

M4 ·
(

α,β, γ,
b cosφ

s
β,

b cosφ

s
γ,

b sinφ

s
α,

b sinφ

s
β

)T

= M4 · φ1 = d1 (24)

We can solve the above linear system, obtaining an initial
estimate for the rotation ω̂0 = (α̂0, β̂0, γ̂0)

T in the first three
components of φ1.

Then we refine the rotation estimate by reinstating the
higher order terms in (15) (by using ω̂0) and solving the
resulting linear system of equations. This process is repeated

until a stable rotation estimate ω̂ = (α̂, β̂, γ̂ )T is obtained.
Numerical tests in the experimental section again show that
the estimate always converges to a stable solution within five
iterations.

Step 3: We substitute the current rotation estimate
(α̂, β̂, γ̂ )T back into the RHS of (23) and form a new system
of equations:

(A3,−B3x4,−B4x5) · (x3, b cosφ,b sinφ)T

= Ã3 · x̃3 = 0 (25)

We solve the homogeneous system (25) for an updated
translation estimate υ̂ . The value of φ is also recovered from
the relationship between the estimate for b cosφ and b sinφ.
Given the current translation estimate υ̂ , we repeat the pro-
cedure in step 2 to obtain an updated rotation estimate ω̂. If
the current motion estimate differs from that of the previous
iteration by less than 0.1 %, stop. Otherwise, repeat step 3
until the solution is stable.
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